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The intetesting'articlecby Archer, Sapuppo, and ﬁetteridge(l) leads
to the problem of determining the optimm 1lift distribution along the wing
during flapping motion. Adopting the assumptions made in Ref. 1, the
problem may be reduced to one of ninimiziqg the induced drag for a
specified, periodically varying, bending moment at the wing root. The
wing-root bending moment should be of primary importance to a bird or,
for that matter, to a mechanical flapping machine, since it is at this
point that most of the flapping energy is introduced.

To solve this problem we adapt a technique employed by Prandtl and
Munk. Assume at first that no net 1ift is specified, that is, the wing
is used solely for propulsion. We seek to determine the load distribu-
tion 2(y) that minimizes the vortex drag Di with a given bending moment
M. Assume that 2(y) is given. Then small variations in the shape,

62(y), will produce no first-order change in D, or M. Since two condi-

i

tions are involved, it is sufficient to consider two discrete elements

of variation (see Fig. 1). The added drag will have three components.
(1) The drag of the added distribution §%;,8%2 in the downwash

vy of the original load distribution 2(y).
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(2) The drag of the original distribution in the downwash of the
added distribution.

(3) The drag of the added distribution alone.

According to Munk's reciprocal theorem (the "mutual drag" theorem),
items (1) and (2) are equal; hence we need consider only item (1).
Item (3) is proportional to the square of the added lift and hence does

not contribute to the first-order variation. We then have the equations:
82,y1 + 82y2 = 0 (for M = 0) (1)

Stw, + 52w

1, = 0 (for GDi = 0) (2)

i

These equations will be satisfied for all positions of 42),68; if we

make

LR ’ (3)

where wy is a constant. Thus, we see that for minimum drag in flapping
motion the induced downwash should vary linearly along the span; that
is, the vortex trace of the wing should move as a rigid surface hinged
at the wing root.

In Munk's original problem, the total lift and the wing span were
given. There it was found that for minimum drag the induced downwash
should be constant along the span or, in other words, the vortex tracn
of the wing should move downward as a rigid surface. This holds as
well for wings having more complex shapes in front view, such as gull
wings or wings with "winglets." Betz even extended this idea to
propellers, showing that for minimum energy loss the vortex trace of a
propeller should move backward as a rigid helix; the potential flow

solution for this motion was found by Goldstein. That such ideas



should persist in the case of flapping motion is therefore not entirely
unexpected.

The extension of eqn. (3) to more complex shapes, such as gull
wings, is easily accomplished by introducing the appropriate cosines
into eqns. (1) and (2). In such cases it is found that minimum energy
loss or drag occurs when the wake moves so as to satisfy the boundary
condition of an impermeable surface having the shape of the wing trc:e
and executing a similar motionm.

In eqn. (2) we assumed that the vortex drag could be calculated by
considering an induced downwash w

i
our calculation to wings of high aspect ratio and to cases in which the

at the wing. This assumption limits

wave length of the flapping motion is long compared with the wind chord.
A still simpler situation arises if we consider very siow flapping such
that the wavelength is large compared with the wing semispan (as assumed
in Ref. 1). In this case, the motion of the wake is approximately two-
dimensional and conventional induced-drag theory can be used.

Adopting the latter assumption, we have to find the spanwise load
distribution that corresponds to a linear variatién of the induced
dowvnwash wi/V. Using the standard inversion formula of airfoil theory

we obtain (see Ref. 2)

-4 2‘/-)'_2_ ¥ ol 8
r wwis(l 0 +82 cosh v (%)

for the ideal distribution of circulation I' during slow flapping (see

Fig. 2). Here s is the wing semispan; it will be seen from eqn. (3)



that the quantity uiolv is the downwash angle vilv at the wing tip.
-1f M:L is the additional 1ift coefficient during flapping we obtain

w,s
i~ - 3
—v—-——'l.,ACL .

(5)

1f we let w be the angular velocity of the flapping motion then wy

will be the vertical velocity of the motion at y. The instantaneous

thrust will be

s .
T= 2/;1‘(:» - ui)y'dy -

Averaging over a cycle and forming the coefficient

T
Co = P 2 '
- 82V
we find
1 (w - wi)s w8 "
Cr =% v v ’
where w and w 4 are now maximum values. The efficiency is
W

where M is the bending moment. The loss of efficiency is thus simply

the ratio of the angular velocity induced by the wake to the angular

(6) -

(7

(8)

(9)

velocity of the wing. At its maximum the efficiency is constant along

the span. Iatroducing eqn. (9) into (8) we find

&S

1 we \
-sn - n)(—v-) ’

(10)



which is a simple equation connecting the thrust, the efficiency, and the
tip helix angle. Figure 3 shows the relation between thrust and effi-
ciency. Figure 4 shows the efficiency given by the optimum loading
(eqn. (4)) compared with that determined in Ref. 3 for an elliptic load-
ing. It will be noted that for a given value of thrust there are two
possible values of the efficiency, the lower value evidently correspond-
ing to an excessively high 1lift coefficient.

Expressing w, in terms of the additional 1lift (eqn. (5)) we find -

3 4G

T AR ws/V ’ (11

n=1

which shows the influence of aspect ratio. Integration over a periodic
cycle shows that the efficiency is a maximum when the incremental lift
ACL is in phase with the upward or downward velocity of the wing tip.
Hence, AcL and w in eqn. (10) may be maximum values during the cycle.
However, for best efficiency the lift increment should be small and the
vertical velocity of the wing tip large—leading to rather large angles
of twist during flapping, as found in Ref, 1.

The exact angle of twist required to obtain the optimum loading
will depend on planform of the wing. To compute this we make use of the

formulas

1'-%cZ Ve , (12)

where CZ is now the local 1lift coefficient and ¢ the local wing chord.

In addition we have
wy
CZ 2% (7} v + Aa8 , (13)

where Aag is the geometric twist angle introduced during the flapping.



Figure 5 shows curves of ug/(wslv) for elliptic wings of AR = 6 and 10.
It appears that the optimum twist for the elliptic wing is almost linear,
conforming to the flapping motion. However, a small additional positive
angle of attack appears to be needed at the wing root. This variation
will, of course, be influenced by the planform shape of the wing.

A complete analysis of the motion of a bird would involve vertical
motions of the body in addition to the pure flapping motion considered
here. Such vertical motions will not only influence the optimum twist
distribution, but will also contribute directly to the propulsion—possibly
in a negative sense.

Since the flapping wing is also normally used for support, it is
necessary to consider the possible "interference drag" between the
steady, supporting 1lift and the alternating 1lift due to flapping.
According to Munk's reciprocal drag theorem we need to consider only
ore term of the interference drag. Taking the drag of the steady
distribution in the downwash field of alternating distribution, it is
easy to see that the interference is zero when averaged over a cycle,
since the downwash of the added distribution is alternately positive
and negative.

It is of interest to compare the values of thrust given in Fig. 3
with those required by a bird for steady flight. To maintain level

flight we must have

CT - CD (14)

The drag crefficient of a well streamlined large bird might be as low

as 0.025. Assuming an aspect ratio of 8,



10 CT

AR

= 0.03 . (15)

For a tip velocity ratio of 0.3, the propulsive efficiency is about
87%.

It has been suggested that the optimum load distribution during
steady (nonflapping) flight would be the elliptic loading. However, as
shown in Ref. 2, a 152 reduction of induced drag can be achieved for
the same bending moment by adopting a morz tapered form for the steady
component of the load distribution. Although the variety seen in the
wings of birds discourages generalization, this fact may explain why
long-flying species, such as the gull and the Frigate bird, have more
tapered wings.

The foregoing-analysis is easily extended to the case of a propeller
operating at a large advance angle. In this case, we are interested in
the rolling moment or torque rather than the bending moment of the wing
root. Equations (1) and (2) remain the same but the "downwash' given
by eqn. (3) is now antisymmetric instead of symmetric and the absolute
value sign on y is removed. The wake then revolves as a rigid helical
strip, in agreement with the Betz-Goldstein result,

The optimum spanwise loading in this case is simply

)
T=4 miaz (g']/l - ‘z-i-) R (16)

giving the thrust coefficient,

T L ws 2
= =~ R |+ 1l - » 17
CI Sp/2v2 8 (V) n " (an



where n igs the efficiency. As in the case of flapping, the induced loss
is the ratio of half the angular velocity of the far wake to the angular
velocity of the wing or blade.

Under the assumptions of slow flapping, or slow turning of the
propeller, the normal slipstream loss considered in the actuator disc
theory (Froude theory) will be negligible. The primary loss is the
"rotational inflow" considered here. As is well known, this loss may
be substantially overcome by using counterrotating propellers in tandem.

The principle of the counterrotating propeller could be extended
to wing flapping—a mode that might be termed "counterflapping." Two
wings in a close tandem arrangement and moving in opposite phase would
eliminate the induced losses we have calculated here. It is interesting
that this mode of propulsion does not appear in nature—except possibly

iu the dragonfly (see Ref. 4).
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FIGURE CAPTIONS

Figure 1.
Figure 2.

Figure 3.

ratio.

Figure 4.
- 0.3-

Figure 5.

Variational problem for flapping with minimvum energy.

Ideal distribution of the additional 1lift during slow fdapping.

L
Thrust and efficiency at different va&lues of the tip velocity

Elliptic loading and optimum loading compared [v .th] ws/V

Angle of twist during flapping elliptic planform: n = 802.
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